ALEXANDER J. GALLO

Viale Belfiore 9, 50144, Firenze, Italia

+39 3272399757 \phi alexanderjulian.gallo@polimi.it \phi alexjgallo.github.io

CURRENT POSITION

Postdoctoral researcher

Sep 2024 - present

Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milano, Italy

Supervisor Dr. Simone Garatti

Project "Learning-based schemes for complex decision making via compression theory"

Objectives • Highlight the benefits of the scenario approach when verifying machine learning models

Investigate scenario approach results in non-convex decision and control problems

RESEARCH INTERESTS

My research interests include analysis, control, optimization and monitoring of dynamical networks and large-scale interconnected systems. I am particularly interested in the interplay between decision making and information – be it due to sources of uncertainty, system partitioning, or malicious attacks.

EDUCATION

PhD Control Engineering – Imperial College of London

Oct 2016 - Jan 2021

Department of Electrical and Electronic Engineering Control and Power Group

Supervisors Prof. Thomas Parisini, Dr. Francesca Boem

Thesis "Plug-and-play Fault Tolerant and Secure Control"

Objectives o Design of distributed and scalable architectures for detection and isolation of cyber-

attacks and faults in large-scale and cyber-physical systems

o Design of control reconfiguration algorithms to accommodate detected anomalies

MEng Electrical Electronic Engineering – Imperial College London

Oct 2012 - Aug 2016

Department of Electrical and Electronic Engineering

Degree classification Second Class Honors, Upper Class

Final Year Thesis "Plug-and-play Fault Tolerant Control of Electrical Grids"

FURTHER ACADEMIC EXPERIENCE

Postdoctoral researcher

Feb 2021 - Aug 2024

Delft Center for Systems and Control, 3mE, Technical University of Delft, the Netherlands

Supervisor Dr. Riccardo M. G. Ferrari

Project "Health-aware wind farm control systems"

Objectives • Design of control algorithm with dual-objective fatigue mitigation and

power generation in wind turbines

• Development of wind-farm-level controllers for lifetime extension

Teaching experience:

• Teaching assistant:

Fault Diagnosis and Fault Tolerant Control

MSc Systems and Control, DCSC, 3mE, TU Delft

Apr-Jul 2022, Apr-Jul 2023, Apr-Jul 2024

• Student supervision:

Co-supervision of two MSc students' theses

Jul 2022 - present

DCSC, 3mE, TU Delft, Netherlands

Visiting periods:

• Hong Kong University

May 2019

Department of Electrical and Electronic Engineering

Supervisor: Prof. Ron S. Y. Hui

Objective: Development and experimental validation of cyber-attack detection algorithms applied to networks of Electric Springs, a power electronics device enabling Demand Side Management

• Alborg University

Apr 2019

Department of Energy Technology

Supervisors: Prof. Josep M. Guerrero, Prof. Juan C. Vasquez

Objective: Experimental validation of cyber-attack detection for DC microgrids

o École Polytechnique Fédérale de Lausanne

Oct 2017, Mar 2018

Department of Mechanical Engineering – Laboratoire d'automatique

Supervisor: Prof. Giancarlo Ferrari-Trecate

Objective: Development of cyber-attack detection algorithms for DC microgrids

Presentations at international conferences:

A number of authored works have been presented by **AJG** at international conference venues (see Publications [C-3, C-4, C-6, C-7, C-8, C-9, C-11, C-12, C-13])

Invited talks:

o Technical University Dortmund, Dortmund, Germany

Oct 2023

Title: Secure switching strategies for multiplicative watermarking

o IMT Lucca, Lucca, Italy

Oct 2023

Title: A distributed cyber-attack detection scheme with application to DC microgrids

o Imperial College London, London, United Kingdom

Nov 2022

Title: Cryptographic switching functions for multiplicative watermarking in cyber-physical systems

• KTH Royal Institute of Technology, Stockholm, Sweden (remote)

Sep 2020

Title: Plug-and-play secure control for DC microgrids: A control-theoretic perspective

International funding:

 \circ Integrated, Value-based and Multi-objective wind farm control powered by Artificial Intelligence (TWAIN) HORIZON-RIA~(2022)

HORIZON-CL5-2022-D3-03 (Sustainable, secure and competitive energy supply)

Grant awarded, score: 15/15

Named researcher. Contribution to writing of grant proposal and contribution to ideation of project for two young researchers in the field of wind farm control and secure control

 \circ Young researcher network for security and resiliency of critical cyber-physical systems (SecRecSy4You) $HORIZON\text{-}TMA\text{-}MSCA\text{-}DN \ (2022)$

HORIZON-MSCA-2022-DN-01

Grant not awarded, score: 80.2/100

Named researcher. Contributions to writing of grant proposal and contribution to ideation of project for one young researcher in the field of secure control

o Plug-and-play fault tolerant control

EPSRC - PhD Scholarship (2016)

Grant awarded

Recipient of funding for the completion of the PhD.

PROFESSIONAL EXPERIENCE

- e.quinox Chairman (2017–18), Vice-chairman Head of Technical Development (2015–16), Project Manager Pico-hydroelectric project, Expedition leader Rwanda (2014–15)
 Oct 2013 Oct 2020 Imperial College Union, London, UK
 - e.quinox is a student-led non-profit humanitarian organization creating sustainable models to electrify rural areas in developing countries with cost-effective renewable energy solutions
 - Objectives: lead the society and teams in the development of technical and business solutions for rural electrification; organize and lead expeditions to Rwanda for prototype trials and implementation; assess impact of implemented projects on the community
- $\circ\,$ ${\bf Ibis}\,\,{\bf Power}\,-$ Electrical Engineering Intern

Apr 2015 - Sep 2015

Eindhoven, Netherlands

Ibis Power is an energy start-up whose aim is to increase the energy generation capabilities of urban areas through innovation in small wind generation

Objectives: Development of electrical systems (including power generation and monitoring) of principal prototype; research control strategies to maximize power of small-scale wind turbines

- [J-1] B. Wolleswinkel, I. van Straalen, L. Ballotta, AJG, R. M. G. Ferrari, "Periodic Sparse Control to Deter Undetectable Attacks on Over-Actuated Systems", IEEE Control Systems Letters (L-CSS), Submitted (second round of review), 2025.
- [J–2] H. Tabatabei, **AJG**, A. al-Dabbagh, "System Output Reconstruction and Accommodation of False-Data Injection Attacks in Large-Scale Systems", *Automatica*, Accepted, 2025.
- [J–3] G. Yang, **AJG**, A. Barboni, R. M. G. Ferrari, A. Serrani, T. Parisini, "On the Output Redundancy of a LTI System: A Geometric Approach with Application to Privacy", *IEEE Transactions on Automatic Control*, Accepted, 2025. [online]
- [J–4] **AJG**, S. C. Anand, A. Teixeira, R. M. G. Ferrari, "Switching Multiplicative Watermark Design Against Covert Attacks", *Automatica*, 177:112301, 2025. [online]
- [J–5] T. Desai, **AJG**, R. M. G. Ferrari, "Multi Timescale Battery Modeling: Integrating Physics Insights to Data-Driven Model", *Applied Energy*, 393: 126040, 2025. [online]
- [J-6] J. Gonzalez Silva, T. Keijzer, **AJG**, R. M. G. Ferrari, J-W van Wingerden, "Multi-rate Consensus-based Distributed Control for Large-Scale Wind Farms", *IEEE Transactions on Control System Technology*, 2025.
- [J-7] J. Chen, **AJG**, S. Yan, T. Parisini, S. Y. R. Hui, "Cyber-attack detection and countermeasure for distributed electric springs for smart grid applications," *IEEE Access*, vol. 10, pp. 13182–13192, 2022.
- [J-8] **AJG**, M. S. Turan, F. Boem, T. Parisini, G. Ferrari-Trecate, "A Distributed Cyber-attack Detection Scheme with Application to DC Microgrids," *IEEE Transactions on Automatic Control*, Special Issue: "Security and Privacy of Distributed Algorithms and Network Systems", vol. 65, no. 9, pp. 3800–3815, 2020. [online]
- [J–9] F. Boem, **AJG**, D. M. Raimondo, T. Parisini, "Distributed Fault-Tolerant Control of Large-Scale Systems: an Active Fault Diagnosis Approach," *IEEE Transactions on Control of Network Systems*, vol. 7, no. 1, pp. 288–301, 2020. [online]
- [C-1] **AJG**, A. Falsone, M. Prandini, S. Garatti, "Robust Non-Convex Optimization with Structured Constraints: Complexity Bounds and Guaranteed Reliability Level of the Scenario Solution", 64th Conference on Decision and Control (CDC), Submitted, 2025.
- [C-2] I. van Straalen, AJG, M. Mazo Jr., R. M. G. Ferrari, "Attack Detection Through Time Fingerprinting: A Stochastic Event-Triggered Control Approach", 64th Conference on Decision and Control (CDC), Submitted, 2025.
- [C-3] B. Wolleswinkel, I. van Straalen, L. Ballotta, AJG, R. M. G. Ferrari, "Periodic Sparse Control to Deter Undetectable Attacks on Over-Actuated Systems", 64th Conference on Decision and Control (CDC), Submitted, 2025.
- [C-4] S. P. Mulders, AJG, M. Rotea, "Analysis of Extremum Seeking Control for Wind Turbine Torque Controller Optimization by Aerodynamic and Generator Power Objectives", American Control Conference, pp. 1030-1037, 2024.
 [online]
- [C-5] J. Zhang, AJG, R. M. G. Ferrari, "Hybrid design of multiplicative watermarking for defense against malicious parameter identification", 62nd Conference on Decision and Control (CDC), pp. 3858– 3863, 2023.
- [C-6] T. Keijzer, **AJG**, R. M. G. Ferrari, "Hierarchical cyber-attack detection in large-scale interconnected systems", 61st Conference on Decision and Control (CDC), pp. 6134-6139, 2022. [online]

- [C-7] Z. Feng, **AJG**, Y. Liu, A. Pamososuryo, R. M. G. Ferrari, J. van Wingerden, "An economic model predictive control approach for load mitigation on multiple tower locations of wind turbines," 61st Conference on Decision and Control (CDC), pp. 2425–2430, 2022. [online]
- [C-8] **AJG**, R. M. G. Ferrari, "Cryptographic switching functions for multiplicative watermarking in cyber-physical systems," 11th IFAC Symposium on Fault Detection, Supervision and Safety for Technical Processes (SAFEPROCESS), vol. 55, n. 6, pp. 414-419, 2022. [online]
- [C-9] **AJG**, S. C. Anand, A. M. H. Teixeira, R. M. G. Ferrari, "Design of multiplicative watermarking against covert attacks," 60th Conference on Decision and Control (CDC), pp. 4176–4181, 2021.

 [online]
- [C-10] **AJG**, F. Boem, T. Parisini, "Distributed cyber-attack isolation for large-scale interconnected systems," European Control Conference (ECC), pp. 48–53, 2021. [online]
- [C-11] **AJG**, A. Barboni, T. Parisini, "On detectability of cyber-attacks for large-scale interconnected systems," 21st IFAC World Congress, pp. 3521-3526, 2020. [online]
- [C-12] A. Barboni, AJG, F. Boem, T. Parisini, "A Distributed Approach for the Detection of Covert Attacks in Interconnected Systems with Stochastic Uncertainties," 58th IEEE Conference on Decision and Control (CDC), pp. 5623-5628, 2019.
- [C-13] AJG, M. S. Turan, P. Nahata, F. Boem, T. Parisini, G. Ferrari-Trecate, "Distributed Cyber-Attack Detection in the Secondary Control of DC Microgrids," European Control Conference (ECC), pp. 344-349, 2018.
- [C-14] **AJG**, M. S. Turan, F. Boem, G. Ferrari-Trecate, T. Parisini, "Distributed watermarking for secure control of microgrids under replay attacks," 7th IFAC Workshop on Distributed Estimation and Control in Networked Systems (NECSYS), vol. 51, n.23, pp. 182–187, 2018. [online]
- [C-15] F. Boem, AJG, G. Ferrari-Trecate and T. Parisini, "A distributed attack detection method for multi-agent systems governed by consensus-based control," 56th IEEE Conference on Decision and Control (CDC), pp. 5961-5966, 2017.
 [online]
- [C-16] D. M. Raimondo, F. Boem, AJG and T. Parisini, "A decentralized fault-tolerant control scheme based on Active Fault Diagnosis," 55th IEEE Conference on Decision and Control (CDC), pp. 2164-2169, 2016.

WORKING PAPERS (UNSUBMITTED)

- [WP-1] **AJG**, R. M. G. Ferrari, "Health-Aware Control for Wind Turbines: a Lexicographic Model Predictive Control Approach,", In preparation.
- [WP-2] S. P. Mullers, AJG, M. Rotea, "Convergence of Extremum Seeking Control for State-Dependent and Bilinear Objectives", In preparation.
- [WP-3] A. Shivam, AJG, G.P. Incremona, A. Ferrara, "Optimal Lamé Curve Paths for Robust Surveillance", In preparation.